

 © 2018, IJCSE All Rights Reserved 9

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.6, Special Issue.11, Dec 2018 E-ISSN: 2347-2693

A Performance Analysis of Improved_Eclat Algorithm in Association Rule

Mining

V. Priya
1*

, S.Murugan
2

1,2

Dept. of Computer Science, Nehru Memorial College, Puthanampatti, India

Available online at: www.ijcseonline.org

Abstract— In mining frequent Itemsets, Eclat algorithm is an important one. But it has some inefficiency. We proposed an

algorithm called Improved_Eclat which is a new improved eclat method with high efficiency in the searching process to reduce

the running time using two dimensional pattern tree. By comparing Improved_Eclat with Eclat , Eclat-opt and Bi-Eclat, hereby

it is proved that the Improved_Eclat has the highest efficiency in mining associating rules from various databases.

Keywords— Association rules, Eclat, increased search approach, increased two- dimensional pattern trees.

I. INTRODUCTION

Association rule mining is one of the most important data

mining problems. Apriori algorithm [1], and FP-growth

algorithm [2] are the most standard algorithms for mining

association rules. Apriori algorithm is based on the approach

of breadth-first search, which generates a (K+1)-itemsets

form frequent k-itemsets, until no more frequent itemsets can

be found. Apriori needs to scan the database many times, its

efficiency is limited by the number of candidate Itemsets.

Many people proposed their improved Apriori algorithms [3-

6], such as DHP [7], DIC [8], MFI-TransSW [9], and so on.

Different from Apriori, FP-growth algorithm is based on the

approach of depth-first search, it does not need to generate

candidate Itemsets instead, it compresses datasets into a FP-

tree and obtains frequent patterns using an FP-tree-based

pattern growth mining method. On the base of FP-growth,

many improved algorithms was proposed[10-12], such as

TD-FP-Growth [13], H-Mine[14],IFP-growth [15], and so

on.

These algorithms are all based on the horizontal data format.

There are many other algorithms based on the vertical data

format, such as Eclat and so on. The efficiency can be

improved using vertical data format when compared with

horizontal data format. We will propose the vertical data

format algorithm.

Fig 1. Data representation formats.

In this paper can be organized as follows. In Section II,

Review on the several improved Eclat Algorithms. In

Section III, We give the proposed Algorithm,

Improved_Eclat and its process, In Section IV, We Present

the Experimental Results, and Conclusions are given in

Section V.

II. RELATED WORK

ZAKI et al[18] proposed Eclat_Diffsets algorithm which

adopts Boolean matrix and Diffsets to reduce the memory

usage and increase the efficiency. The algorithm adopts

Boolean matrix to store the itemset and TID_set, and uses

binary operation to determine the intersection, which can

improve the efficiency of intersection. It can effectually

reduce the size of memory required to store intermediate

results when the database is solid.

Xiong et al [19] proposed HEclat algorithm, the hash

Boolean matrix to polish up the calculation of intersection.

The algorithm uses hash Boolean matrix to store the TID_set

of itemsets. It does not need to compare the TIDs of two

itemsets one by one, but need to use bitwise “AND”

operation on the two Boolean matrix. The

technology of hash Boolean matrix can recover the

competence only when the number of transactions of a

database is not large. If the number of transactions is very

large, it makes things worse.

Feng et al [20] proposed Eclat-opt algorithm, It uses double

layer hash table, panel list of the set of itemset and TID

misplaced threshold. These technologies can trim the

candidate 3-itemset, decrease the search space as well as the

time of making candidate itemsets, and haste up the design

of intersection. In general, Eclat-opt algorithm is muchmore

effective than other Eclat based algorithms. Xiaomei Yu, Hong Wang [21] proposed Bi-Eclat algorithm, this algorithm the Items are arranged in descending order according to the frequencies in transaction cache while itemsets use ascending order of support through support count. Likened with

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 10

traditional Eclat algorithm, the results of tests show that the

Bi-Eclat algorithm increases improved performance.

The surviving enriched Eclat algorithms can shine up the

effectiveness of original Eclat algorithm, but these

algorithms still have some problems, such as large number of

candidate itemset, incompetence of Itemsets connection and

intersection.

III. METHODOLOGY

The proposed Improved_Eclat Algorithm, which is based on

vertical data format. An Improved_Eclat using two-

dimensional pattern tree and the TID_sets of itemsets in the

vertical data format table are added into the pattern tree row

by row. New frequent itemsets are generated by joining the

new added itemset with the existing frequent itemsets in the

pattern tree. The process of joining is based on the BFS.

Firstly, the candidate and frequent 2-itemsets are generated,

then make the candidate and frequent 3-itemsets, and etc,

until all frequent itemsets in the pattern are linked with the

new added itemset. The candidate itemsets are poised

directly by the frequent itemset and new added itemset,

without the operation of itemsets connection. Due to the

breadth-first search approach, it can be used for cut the

candidate itemsets completely. All redundant candidate

itemsets will be curt.

Improved_Eclat Algorithm:

The core process of Improved_Eclat algorithm Initially, it

scans the database and stores it into a table using vertical

data format.Next, it establishes a null increased two-

dimensional pattern tree and adds the TID_sets of itemsets

in the vertical data format into the pattern tree row by row

to produce new frequent itemsets.At last, all frequent

itemsets can be created by picking up all nodes in the

pattern tree.

Input:

o D,Database of Transaction

o MS, the minimum support threshold

Output:

 FIs ,All frequent

Itemsets Steps:

1. VM = CreateVMfromDB(D)

2. PT=CreateNullPatternTree

3. for i = 1 to length(VM) do

4. if length(VM[i].TID_sets) >= MS then

5. AddItemtoPatternTree(VM[i], PT, MS);

6. end

7. FIs=GetAllFrequentItemsetsfromPatternTree(Two-

dimensionalPattern Tree: PT)

Fig 2. Improved_Eclat Algorithm.

The increased two-dimensional pattern tree is poised of nodes

and a cover pointer array.

A node is clear as following:

TreeNode={itemset, TID_set, PtoF, PtoC, HP, IsValid}.

Every TreeNode includes the information of a

frequent itemset, such as the itemset and the TID_set.

Besides itemset and TID_set,

A TreeNode also has other four elements:

The element “PtoF” are pointers pointing to the nodes of its

two fathers.The element “PtoC” are pointers pointing to the

nodes of its children.The element “HP” are a slanting pointer,

which is used for connecting the frequent itemsets with same

length together.

The element “IsValid” is a boolean value, which is used

for indicating whether the node can be combined with

another node.

If an (K+1)-itemset A is joined by two k-itemset B and C,

then B and C are the fathers of A, and A is the child of B and

C. The pattern tree has multiple layers and the frequent item

sets with same length belong to the same layer.

The layer pointer array is defined as following: Layer

Pointers: array of Pointer. The elements of layer pointer array

are pointers pointing to the first node of all layers. So we can

find all frequent 1-itemsets based on the first element of the

layer pointer array, and find all frequent 2-itemsets based on

the second element, and so on. All frequent item sets can be

found from the elements of the layer pointer array.

Initially, establishing sorted two-dimensional pattern tree is

tree initialization, add a null node to tree as the ancestor node

of all frequent 1-itemsets, and set the length of LayerPointers

as zero. After initialization, every TID_set of frequent 1-

itemset in the vertical data format table are added into the

pattern tree as the nodes of the first layer. Supposing the new

added itemset as In, which contains the transactions of

TID_set (In), the process of adding a new itemset to pattern

tree can be described as follows:

Firstly, form a new node “Node(In)” for In.

 The elements of Node(In) are:

Node(In).itemset=In,

Node(In).TID_set=TID_set(In),

Node(In).PtoF=nil,

Node(In).PtoC=nil,

Node(In).IsValid=true.

The HP of the last node in the first layer (frequent 1-itemset

layer) is set to point to Node(In).Combine Node(In) with

every node (Node(Ix-1)) in the first layer (frequent 1-itemset

layer) to generate candidate 2-itemsets and calculate the

support degree of the candidate 2-itemsets. If a candidate 2-

itemset is frequent, a new node for the candidate 2-itemset

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 11

will be made, the element “itemset” of new node will be set

as the mixture of Ix-1 and In, and the element “TID_set” of

new node will be set as the intersection of TID_set(Ix-1) and

TID_set(In). Also, the element “PtoF” of new node will point

to Node(Ix-1) and Node(In). Finally the HP of the last node

in the second layer (frequent 2-itemset layer) is set to point to

the new node. If a candidate 2-itemset is not frequent, it will

need to be abandoned and the element “IsValid” of all

children of Node(Ix-1) must be set as false.

Join Node(In) with every node (Node(Ix-2)) in the second

layer (frequent 2-itemset layer) to generate candidate 3-

itemsets. If the element “IsValid” of Node(Ix-2) is false, it

cannot be joined with Node(In). Thus, we need to set the

value of “IsValid” as true for further combination. If the

element “IsValid” of Node(Ix-2) is true, it needs to be

combined with Node(In) to generate a candidate 3-itemset,

and to calculate the support degree of the candidate 3-

itemset. If the candidate 3-itemset is frequent, a new node for

the candidate 3- itemset will be made, the element “itemset”

of new node will be set as the combination of Ix-2 and In, the

element “TID_set” of new node will be set as the intersection

of TID_set(Ix- 2) and TID_set(In). Also, the element “PtoF”

of new node will point to Node(Ix-2) and Node(In), finally

set the HP of the last node in the thrid layer (frequent 3-

itemset layer) to point to the new node. If a candidate 3-

itemset is not frequent, it needs to be abandoned and the

element “IsValid” of all children of Node(Ix-2) must be set

as false.In the same way, Node(In) needs to be combined

with all of the nodes in other layers to get all frequent

itemsets.The process of adding a TID_set of frequent 1-

itemset in the vertical data format table to the pattern tree .

Input:

 VM,Vertical Matrix

 PT,Two Dimentional Pattern Tree

 MS,Min-Sup

Output:

 A new Pattern Tree

Steps:

1. for i = 1 to length(LayerPointers) do

2. if i =1 then

3. newNode = AddNewNodetoTree(VM[i])

4. tmpNode = LayerPointers[i]

5. while tmpNode ≠ null do

6. if tmpNode.isValid = true then

7. NewCombineNode =

CombineNewPattern(newNode, tmpNode)

8. if Support(newCombineNode) >= MS then

9. AddNodetoTree(newCombineNode)

10. else

11. SetAllChildrenFalse(newCombineNode)

12. end

13. else

14. tmpNode.isValid == true;

15. end if Support(newCombineNode) >= MS

16. tmpNode = tmpNode.HorizontalPointer

17. end while tmpNode ≠ null

18. end LayerPointers

Fig 3: AddItemtoPatternTree.

Taking the vertical format database, by setting the minimum

support degree then process of building the increased two-

dimensional pattern . Improved_Eclat can clip the candidate

itemsets completely and reduce the number of candidate

itemsets obviously under the prior knowledge. The algorithm

adopts Boolean matrix to store the itemset and TID_set, and

uses binary operation to determine the intersection, which can

improve the efficiency of intersection and then calculating the

intersection and support degree, it can clearly decrease the

computational complexity.

IV. RESULTS AND DISCUSSION

In this paper, we compare Improved_Eclat with the Eclat

focused algorithms. To show the usefulness of the

Improved_Eclat algorithm, we associate it with an Eclat

algorithm [16], and an Eclat-opt algorithm [20] and Bi-Eclat

[21]. All testing were executed on a PC with Inter Core 1.8G

and 4G main memory, running on Microsoft Windows 10 64-

bit and all the programs are coded in VC++. We compare the

Accuracy and processing time of Improved_ Eclat on the

following Datasets.

The standard datasets Mushroom, Chess and Accidents,

T10I4D100K, Kosarak, T40I10D100K, are used. The entire

records from the above datasets are preserved as 100% .The

whole records in the datasets aggregation and the metrics are

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 12

measured after processing and the results are for every 20%

of data.

Accuracy:

Acuracy is the most important in data mining. In this

scenario, Eclat-Opt secures the least average accuracy mark

of 82.49% whereas the proposed Improved_Eclat algorithm

locks the highest accuracy mark average of 87.63%. The very

close result in accuracy of 87.15% is reached by the Bi-Eclat

method. The measured values are presented in the graph is

given in Figure 4.

Fig 4: Graph for Accuracy (%).

Processing Time:
Processing time is one of the vigorous fight in data mining

procedures. The execution time of remaining and proposed
algorithms are stately here in millisecond units for higher

care. The full transaction records are fragmented into 20%

data slices and the processing time is measured after every
data slice is processed. Therefore, 5 processing times are

noted for every data mining procedure discussed here. The
practical processing times are show in the graph is given in

Figure 5.

Fig 5. Graph for Processing Time (mS).

V. CONCLUSION

An Improved_Eclat algorithm, on the basis of increased

search approach, adopts new technologies, such as two-

dimensional pattern tree. In this method of construction of

two-dimensional pattern tree, the prior knowledge can be

used for extract the candidate itemsets fully and all redundant

candidate itemsets will be abrupt and calculating the

intersection and support degree, it can visibly reduction the

computational complexity. The analysis and experimental

shows that Improved_Eclat has the maximum performance in

mining associating rules from various databases than Eclat,

Eclat-opt and Bi-Eclat. In the future research, we will also

concentrate on cloud offloading using Improved_eclat, and

explore new techniques to improve the accuracy and running

time using cloud environment.

REFERENCES

[1] R. Agrawal, T. Imilienski and A. Swami, “Mining association rules

between sets of items in large databases”, Proceeding of the ACM

SIGMOD Int‟l Conference on Management of Data, Washington

DC, (1993), pp. 207-216.

[2] J. Han, J. Pei and Y. Yin, “Mining frequent patterns without

candidate generation”, Proceedings of the2000 ACM SIGMOD

International Conference on Management of Data, (2000), pp. 1-12.

[3] J. Dong and M. Han, “BitTableFI: An efficient mining frequent

itemsets algorithm”, Knowledge-Based Systems, vol. 20, no. 4,

(2007), pp. 329-335.

[4] C. Aflori and M. Craus, “Grid implementation of the Apriori

algorithm”, Advances in Engineering Software, vol.38, no. 5,

(2007), pp. 295-300.

[5] F. Berzal, J. Cubero and N. Marin, “TBAR: An efficient method for

association rule mining in relational databases”, Data &

Knowledge Engineering, vol. 37, no. 1, (2001), pp. 47-64.

[6] D. C. Pi, X. L. Qin and N. S. Wang, “Mining Association Rule

Based on Dynamic Pruning”, Mini- Micro Systems, vol. 10, (2004),

pp. 1850-1852.

[7] J. Pork, M. Chen and P. Yu, “An effective hash based algorithm for

mining association rules”, ACM SIGMOD, vol. 24, no. 2, (1995),

pp. 175-186.

[8] S. Brin, R. Motwani and C. Silverstein, “Beyond market

baskets: generalizing association rules to correlations,”

ACM SIGMOD Conference on Management of Data, Tuscon, AZ,

(1997), pp. 265–276.

[9] H. F. Li and S. Y. Lee, “Mining frequent itemsets over data streams

using efficient window sliding techniques”, Expert Systems with

Applications, vol. 36, no. 2, (2009), pp. 1466-1477.

[10] Y. F. Zhong and H. B. Lv, “An Incremental Updating Algorithm

to Mine Association Rules Based on Frequent Pattern Growth”,

Computer engineering and Application, vol. 26, (2004), pp. 174-

175.

[11] R. Balazs, “Nonordfp: An FP-Growth Variation without

Rebuilding the FP-Tree”, Proceedings of the IEEE ICDM

Workshop on Frequent Itemset Mining Implementa-tions, (2004).

[12] G. Gosta and J. F. Zhu, “Fast Algorithms for Frequent

Itemset Mining Using FP-Trees”, IEEE Transactions on

Knowledge and Data Engineering, vol. 17, no. 10, (2005), pp.

1347-1362.

[13] W. Ke, T. Liu, H. J. Wei and L. J. Qiang, “Top down fp-growth

for association rule mining”, The 6
th
 Pacific-Asia Conference,

PAKDD 2002, Taipei, Taiwan, (2002), pp. 334-340.

[14] J. Pei, J. W. Han and H. J. Lu, “H-Mine: Fast and space-

preserving frequent pattern mining in large databases”, IIE

Transactions, vol. 39, no. 6, (2007), pp. 593-605.

[15] K. C. Lin, I. Liao and Z. S. Chen, “An improved frequent pattern

growth method for mining association rules”, Expert Systems with

Applications, vol. 38, no. 5, (2011), pp. 5154-5161.

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 13

[16] M. Zaki, “Scalable algorithms for association mining”, IEEE

Transactions on Knowledge and Data Engineering, vol. 12, no. 3,

(2000), pp. 372-390.

[17] L. S. Thieme, “Algorithmic Features of Eclat”, Proceedings of the

IEEE ICDM Workshop on Frequent Itemset Mining

Implementations, Brighton, UK, November, (2004).

[18] M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets”,

Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, New York, USA,

(2003), pp. 326-335.

[19] X. Z. Yang, C. P. En and Z. Y. Fang, “Improvement of Eclat

algorithm for association rules based on hash Boolean matrix”,

Application Research of Computers, vol. 27, no. 4, (2010), pp.

1323-1325.

[20] F. P. En, L. Yu, Q. Q. Ying and L. L. Xing, “Strategies of

efficiency improvement for Eclat algorithm”,Journal of Zhejiang

University (Engineering Science), vol. 47, no. 2, (2013), pp. 223-

230.

[21] Xiaomei Yu, Hong Wang, “Improvement of Eclat Algorithm

Based on Support in Frequent Itemset Mining”,Journal

ofComputers”, vol. 9, no. 9, (2014), pp. 2116-2123

