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Abstract— In mining frequent Itemsets, Eclat algorithm is an important one. But it has some inefficiency. We proposed an 

algorithm called Improved_Eclat which is a new improved eclat method with high efficiency in the searching process to reduce 

the running time using two dimensional pattern tree. By comparing Improved_Eclat with Eclat , Eclat-opt and Bi-Eclat, hereby 

it is proved that the Improved_Eclat has the highest efficiency in mining associating rules from various databases. 

 

Keywords— Association rules, Eclat, increased search approach, increased two- dimensional pattern trees. 

 

I.  INTRODUCTION  

 

Association rule mining is one of the most important data 

mining problems. Apriori algorithm [1], and FP-growth 

algorithm [2] are the most standard algorithms for mining 

association rules. Apriori algorithm is based on the approach 

of breadth-first search, which generates a (K+1)-itemsets 

form frequent k-itemsets, until no more frequent itemsets can 

be found. Apriori needs to scan the database many times, its 

efficiency is limited by the number of candidate Itemsets. 

Many people proposed their improved Apriori algorithms [3-

6], such as DHP [7], DIC [8], MFI-TransSW [9], and so on. 

Different from Apriori, FP-growth algorithm is based on the 

approach of depth-first search, it does not need to generate 

candidate Itemsets instead, it compresses datasets into a FP- 

tree and obtains frequent patterns using an FP-tree-based 

pattern growth mining method. On the base of FP-growth, 

many improved algorithms was proposed[10-12], such as 

TD-FP-Growth [13], H-Mine[14],IFP-growth [15], and so 

on. 

 

These algorithms are all based on the horizontal data format. 

There are many other algorithms based on the vertical data 

format, such as Eclat and so on. The efficiency can be 

improved using vertical data format when compared with 

horizontal data format. We will propose the vertical data 

format algorithm. 

 
Fig 1. Data representation formats. 

 

 

In this paper can be organized as follows. In Section II, 

Review on the several improved Eclat Algorithms. In 

Section III, We give the proposed Algorithm, 

Improved_Eclat and its process, In Section IV, We Present 

the Experimental Results, and Conclusions are given in 

Section V. 

 

II. RELATED WORK 

 

ZAKI et al[18] proposed Eclat_Diffsets algorithm which 

adopts Boolean matrix and Diffsets to reduce the memory 

usage and increase the efficiency. The algorithm adopts 

Boolean matrix to store the itemset and TID_set, and uses 

binary operation to determine the intersection, which can 

improve the efficiency of intersection. It can effectually 

reduce the size of memory required to store intermediate 

results when the database is solid.    

 

Xiong et al [19] proposed HEclat algorithm, the hash 

Boolean matrix to polish up the calculation of intersection. 

The algorithm uses hash Boolean matrix to store the TID_set 

of itemsets. It does not need to compare the TIDs of two 

itemsets one by one, but need to use bitwise “AND” 

operation on  the  two  Boolean  matrix. The 

technology of hash Boolean matrix can recover the 

competence only when the number of transactions of a 

database is not large. If the number of transactions is very 

large, it makes things worse.   

   

Feng et al [20] proposed Eclat-opt algorithm, It uses double 

layer hash table, panel list of the set of itemset and TID 

misplaced threshold. These technologies can trim the 

candidate 3-itemset, decrease the search space as well as the 

time of making candidate itemsets, and haste up  the  design  

of intersection. In general, Eclat-opt algorithm is muchmore 

effective than other Eclat based algorithms.     Xiaomei Yu, Hong Wang [21] proposed Bi-Eclat algorithm, this algorithm the Items are arranged in descending order according to the frequencies in transaction cache while itemsets use ascending order of support through support count. Likened with 
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traditional Eclat algorithm, the results of tests show that the 

Bi-Eclat algorithm increases improved performance. 

 

The surviving enriched Eclat algorithms can shine up the 

effectiveness of original Eclat algorithm, but these 

algorithms still have some problems, such as large number of 

candidate itemset, incompetence of Itemsets connection and 

intersection. 
 

III. METHODOLOGY 
 

The proposed Improved_Eclat Algorithm, which is based on 

vertical data format. An Improved_Eclat using two- 

dimensional pattern tree and the TID_sets of itemsets in the 

vertical data format table are added into the pattern tree row 

by row. New frequent itemsets are generated by joining the 

new added itemset with the existing frequent itemsets in the 

pattern tree. The process of joining is based on the BFS. 

Firstly, the candidate and frequent 2-itemsets are generated, 

then make the candidate and frequent 3-itemsets, and etc, 

until all frequent itemsets in the pattern are linked with the 

new added itemset. The candidate itemsets are poised 

directly by the frequent itemset and new added itemset, 

without the operation of itemsets connection. Due to the 

breadth-first search approach, it can be used for cut the 

candidate itemsets completely. All redundant candidate 

itemsets will be curt. 

 

Improved_Eclat Algorithm: 
 

The core process of Improved_Eclat algorithm Initially, it 

scans the database and stores it into a table using vertical 

data format.Next, it establishes a null increased two-

dimensional pattern tree and adds the TID_sets of itemsets 

in the vertical data format into the pattern tree row by row 

to produce new frequent itemsets.At last, all frequent 

itemsets can be created by picking up all nodes in the 

pattern tree. 

Input: 

o D,Database of Transaction 

o MS, the minimum support threshold 

Output: 

 FIs ,All frequent 

Itemsets Steps: 

1. VM = CreateVMfromDB(D) 

2. PT=CreateNullPatternTree 

3. for i = 1 to length(VM) do 

4. if length(VM[i].TID_sets) >= MS then 

 

5. AddItemtoPatternTree(VM[i], PT, MS); 

 

6. end 

 

7. FIs=GetAllFrequentItemsetsfromPatternTree(Two-

dimensionalPattern Tree: PT) 

Fig 2. Improved_Eclat Algorithm. 

The increased two-dimensional pattern tree is poised of nodes 

and a cover pointer array.   

A node is clear as  following: 

TreeNode={itemset,  TID_set,  PtoF, PtoC, HP, IsValid}. 

Every TreeNode includes the information of a 

frequent itemset, such as the itemset and the TID_set. 

Besides itemset and TID_set, 

A TreeNode also has other four elements: 

 

The element “PtoF” are pointers pointing to the nodes of its 

two fathers.The element “PtoC” are pointers pointing to the 

nodes of its children.The element “HP” are a slanting pointer, 

which is used for connecting the frequent itemsets with same 

length together. 

 

The element “IsValid” is a boolean value, which is used 

for indicating whether the node can be combined with 

another node. 

 

If an (K+1)-itemset A is joined by two k-itemset B and C, 

then B and C are the fathers of A, and A is the child of B and 

C. The pattern tree has multiple layers and the frequent item 

sets with same length belong to the same layer. 

 

The layer pointer array is defined as following: Layer 

Pointers: array of Pointer. The elements of layer pointer array 

are pointers pointing to the first node of all layers. So we can 

find all frequent 1-itemsets based on the first element of the 

layer pointer array, and find all frequent 2-itemsets based on 

the second element, and so on. All frequent item sets can be 

found from the elements of the layer pointer array. 

 

Initially, establishing sorted two-dimensional pattern tree is 

tree initialization, add a null node to tree as the ancestor node 

of all frequent 1-itemsets, and set the length of LayerPointers 

as zero. After initialization, every TID_set of frequent 1- 

itemset in the vertical data format table are added into the 

pattern tree as the nodes of the first layer. Supposing the new 

added itemset as In, which contains the transactions of 

TID_set (In), the process of adding a new itemset to pattern 

tree can be described as follows: 

Firstly, form a new node “Node(In)” for In.

 The elements of Node(In) are: 

Node(In).itemset=In, 

Node(In).TID_set=TID_set(In), 

Node(In).PtoF=nil, 

Node(In).PtoC=nil, 

Node(In).IsValid=true. 

 

The HP of the last node in the first layer (frequent 1-itemset 

layer) is set to point to Node(In).Combine Node(In) with 

every node (Node(Ix-1)) in the first layer (frequent 1-itemset 

layer) to generate candidate 2-itemsets and calculate the 

support degree of the candidate 2-itemsets. If a candidate 2-

itemset is frequent, a new node for the candidate 2-itemset 
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will be made, the element “itemset” of new node will be set 

as the mixture of Ix-1 and In, and the element “TID_set” of 

new node will be set as the intersection of TID_set(Ix-1) and 

TID_set(In). Also, the element “PtoF” of new node will point 

to Node(Ix-1)  and  Node(In).  Finally the HP of the last node 

in the second layer (frequent 2-itemset layer) is set to point to 

the new node. If a candidate 2-itemset is not frequent, it will 

need to be abandoned and the element “IsValid” of  all 

children of Node(Ix-1) must be set as false. 

 

Join Node(In) with every node (Node(Ix-2)) in the second 

layer (frequent 2-itemset layer) to generate candidate 3-

itemsets. If the element “IsValid” of Node(Ix-2) is false, it 

cannot be joined with Node(In). Thus, we need to set the 

value of “IsValid” as true for further combination. If the 

element “IsValid” of Node(Ix-2) is true, it needs to be 

combined with Node(In) to generate a candidate 3-itemset, 

and to calculate the support degree of the candidate 3-

itemset. If the candidate 3-itemset is frequent, a new node for 

the candidate 3- itemset will be made, the element “itemset” 

of new node will be set as the combination of Ix-2 and In, the 

element “TID_set” of new node will be set as the intersection 

of TID_set(Ix- 2) and TID_set(In). Also, the element “PtoF” 

of new node will point to Node(Ix-2) and Node(In), finally 

set the HP of the last node in the thrid layer (frequent 3-

itemset layer) to point to the new node. If a candidate 3-

itemset is not frequent, it needs to be abandoned and the 

element “IsValid” of all children of Node(Ix-2) must be set 

as false.In the same way, Node(In) needs to be combined 

with all of the nodes in other layers to get all frequent 

itemsets.The process of adding a TID_set of frequent 1-

itemset in the vertical data format table to the pattern tree . 

 

Input: 

 VM,Vertical Matrix
 

 

 PT,Two Dimentional Pattern Tree
 

 

 MS,Min-Sup
 

Output: 

 A new Pattern Tree
 

Steps: 

 

1. for i = 1 to length(LayerPointers) do 

 

2. if i =1 then 

 

3. newNode = AddNewNodetoTree(VM[i]) 

 

4. tmpNode = LayerPointers[i] 

 

5. while tmpNode ≠ null do 

 

6. if tmpNode.isValid = true then 

 

7. NewCombineNode =  

CombineNewPattern(newNode, tmpNode) 

 

8. if Support(newCombineNode) >= MS then 

 

9. AddNodetoTree(newCombineNode) 

 

10. else 

 

11. SetAllChildrenFalse(newCombineNode) 

 

12. end 

 

13. else 

 

14. tmpNode.isValid == true; 

 

15. end if Support(newCombineNode) >= MS 

 

16. tmpNode = tmpNode.HorizontalPointer 

 

17. end  while tmpNode ≠ null 

 

18. end LayerPointers 

 

Fig 3: AddItemtoPatternTree. 

 

Taking the vertical format database, by setting the minimum 

support degree then process of building the increased two-

dimensional pattern . Improved_Eclat can clip the candidate 

itemsets completely and reduce the number of candidate 

itemsets obviously under the prior knowledge. The algorithm 

adopts Boolean matrix to store the itemset and TID_set, and 

uses binary operation to determine the intersection, which can 

improve the efficiency of intersection and then calculating the 

intersection and support degree, it can clearly decrease the 

computational complexity. 

 

IV. RESULTS AND DISCUSSION 

 

In this paper, we compare Improved_Eclat with the Eclat 

focused algorithms. To show the usefulness of the 

Improved_Eclat algorithm, we associate it with an Eclat 

algorithm [16], and an Eclat-opt algorithm [20] and Bi-Eclat 

[21]. All testing were executed on a PC with Inter Core 1.8G 

and 4G main memory, running on Microsoft Windows 10 64-

bit and all the programs are coded in VC++. We compare the 

Accuracy and processing time of Improved_ Eclat on the 

following Datasets. 

 

The standard datasets Mushroom, Chess and Accidents, 

T10I4D100K, Kosarak, T40I10D100K, are used. The entire 

records from the above datasets are preserved as 100% .The 

whole records in the datasets aggregation and the metrics are 
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measured after processing and the results are for every 20% 

of data. 

 

Accuracy: 

Acuracy is the most important in data mining. In this 

scenario, Eclat-Opt secures the least average accuracy mark 

of 82.49% whereas the proposed Improved_Eclat algorithm 

locks the highest accuracy mark average of 87.63%. The very 

close result in accuracy of 87.15% is reached by the Bi-Eclat 

method. The measured values are presented in the graph is 

given in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Graph for Accuracy (%). 

 

Processing Time:  
Processing time is one of the vigorous fight in data mining 

procedures. The execution time of remaining and proposed 
algorithms are stately here in millisecond units for higher 

care. The full transaction records are fragmented into 20% 

data slices and the processing time is measured after every 
data slice is processed. Therefore, 5 processing times are 

noted for every data mining procedure discussed here. The 
practical processing times are show in the graph is given in 

Figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 5. Graph for Processing Time (mS). 

 

 
V. CONCLUSION 

An Improved_Eclat algorithm, on the basis of increased 

search approach, adopts new technologies, such as two-

dimensional pattern tree. In this method of construction of 

two-dimensional pattern tree, the prior knowledge can be 

used for extract the candidate itemsets fully and all redundant 

candidate itemsets will be abrupt and calculating the 

intersection and support degree, it can visibly reduction the 

computational complexity. The analysis and experimental 

shows that Improved_Eclat has the maximum performance in 

mining associating rules from various databases than Eclat, 

Eclat-opt and Bi-Eclat. In the future research, we will also 

concentrate on cloud offloading using Improved_eclat, and 

explore new techniques to improve the accuracy and running 

time using cloud environment. 
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